0%

PAT-1007 Maximum Subsequence Sum

1007 Maximum Subsequence Sum

题意

给定一个数列,计算每个这个序列最大子序列的和

思路

计算每个点为终点的最大子序列和
maxSeqSum[i] = max(num[i], maxSeqSum[i - 1] + num[i])

源码

line_number: true
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <iostream>
#include <stdio.h>
#include <map>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
using namespace std;
struct ST_MAX_SUM_SEQUENCE{ //记录最大子序列和
int iStartIndex;
int iEndIndex;
int iSum;
};
int main()
{
int iK;
scanf("%d", &iK);

int szNum[iK];
ST_MAX_SUM_SEQUENCE stMaxSumSequence[iK]; //记录每个位置子序列和
ST_MAX_SUM_SEQUENCE stMaxSum; //记录和最大的子序列
stMaxSum.iStartIndex = 0;
stMaxSum.iEndIndex = 0;
cin>>szNum[0];
stMaxSum.iSum = szNum[0];

stMaxSumSequence[0].iStartIndex = 0;
stMaxSumSequence[0].iEndIndex = 0;
stMaxSumSequence[0].iSum = szNum[0];
for(int i = 1; i < iK; i++)
{
cin >> szNum[i];

if(szNum[i] + stMaxSumSequence[i - 1].iSum >= szNum[i])
{
stMaxSumSequence[i].iStartIndex = stMaxSumSequence[i - 1].iStartIndex;
stMaxSumSequence[i].iEndIndex = i;
stMaxSumSequence[i].iSum = szNum[i] + stMaxSumSequence[i - 1].iSum;
}
else
{
stMaxSumSequence[i].iStartIndex = i;
stMaxSumSequence[i].iEndIndex = i;
stMaxSumSequence[i].iSum = szNum[i];
}

if (stMaxSum.iSum < stMaxSumSequence[i].iSum)
{
stMaxSum.iStartIndex = stMaxSumSequence[i].iStartIndex;
stMaxSum.iEndIndex = stMaxSumSequence[i].iEndIndex;
stMaxSum.iSum = stMaxSumSequence[i].iSum;
}
}

if(stMaxSum.iSum < 0)
{
cout<< 0 << " " << szNum[0] << " " << szNum[iK - 1] <<endl;
}
else
{
cout<< stMaxSum.iSum << " " << szNum[stMaxSum.iStartIndex] << " " << szNum[stMaxSum.iEndIndex] <<endl;
}
return 0;
}